Modeling Mechanisms with Nonholonomic Joints Using the Botzmann-Hamel Equations
نویسندگان
چکیده
School of Mechanical Engineering Georgia Institute of Technology Atlanta, Georgia 30332 This paper describes a new technique for deriving dynamic equations of motion for serial chain and tree topology mechanisms with common nonholonomic constraints. For each type of nonholonomic constraint, the Boltzmann-Hamel equations produce a concise set of dynamic equations. These equations are similar to Lagrange's equations and can be applied to mechanisms which incorporate that type of constraint. A small library of these equations can be used to efficiently analyze many different types of mechanisms. Nonholonomic constraints are usually included in a Lagrangian setting by adding Lagrange multipliers and then eliminating them from the final set of equations. The approach described in this paper automatically produces a minimum set of equations of motion which do not include Lagrange multipliers.
منابع مشابه
The Boltzmann–Hamel equations for the optimal control of mechanical systems with nonholonomic constraints
In this paper, we generalize the Boltzmann–Hamel equations for nonholonomic mechanics to a form suited for the kinematic or dynamic optimal control of mechanical systems subject to nonholonomic constraints. In solving these equations one is able to eliminate the controls and compute the optimal trajectory from a set of coupled first-order differential equations with boundary values. By using an...
متن کاملModeling a Robot with Flexible Joints and Decoupling its Equations of Motion
Recently a method has been developed to decouple the equations of motion for multi-rigid body systems. In this paper, the method is first studied, then the equations of motion for a planar two degree-of-freedom robot with flexible joints are carried out using Lagaranges equations and Kanes equation with congruency transformations. Finally, the results obtained from both methods are throroughly ...
متن کاملModeling a Robot with Flexible Joints and Decoupling its Equations of Motion
Recently a method has been developed to decouple the equations of motion for multi-rigid body systems. In this paper, the method is first studied, then the equations of motion for a planar two degree-of-freedom robot with flexible joints are carried out using Lagarange's equations and Kane's equation with congruency transformations. Finally, the results obtained from both methods are throroughl...
متن کاملRobust Sliding Mode Controller for Trajectory Tracking and Attitude Control of a Nonholonomic Spherical Mobile Robot
Based on dynamic modeling, robust trajectory tracking control of attitude and position of a spherical mobile robot is proposed. In this paper, the spherical robot is composed of a spherical shell and three independent rotors which act as the inner driver mechanism. Owing to rolling without slipping assumption, the robot is subjected to two nonholonomic constraints. The state space representatio...
متن کاملAnalytical Investigation of Jeffery-hamel Fow with High Magnetic Field and Nano Particle by RVIM
Many researchers have been interested in application of mathematical methods to find analytical solutions of nonlinear equations and for this purpose, new methods have been developed. One of the newest analytical methods to solve nonlinear equations is Reconstruction of variational Iteration Method (RVIM) which is an accurate and a rapid convergence method in finding the approximate solution fo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- I. J. Robotics Res.
دوره 16 شماره
صفحات -
تاریخ انتشار 1997